Cecture 16 Plan: 1)Natroid ept. (see lec 15 notes) 2) Matroid polytopes Pset 4 due Mon Apr 25 3) Next time? Pset 5 probs due play 13 Matroid intersection More preliminaries:

Rank function · Analogono to rank of matrices · rank function FM: 2 > N

of matroid M=(E,I) is rn(x) := max { | y | : Y & X & Y &] }. = size of laget independent set = size of any independent set 4lot ts maximul in X. (all nax'l "Somtimes just F:= In in X have Same SIZE, maximula in X maximul Examples lincor matroid: r(X) = rank (Ax) usual rank. Partition matroid: Recall Dr. for E = E, U.... VEL, K, Kg $f_{I} = \{ X \subseteq E : | X \cap E : | \leq K : \forall i = 1 \dots R \}$

$$f(X) = \sum_{j=1}^{8} \min\{I \in JX\}, K_{i}\}$$

elses F.
E.g.
$$F$$

 $\Gamma(F) = 5 - 2 = 3$

Properties of rank function

fet r be rank function of matroid. (R1) $o \in (X) \leq |X|$ (RZ) <u>monotonicity</u>: XGY $= f(X) \in f(Y) \in I$ (R3) submodularity: r(X)+r(X) ≥ r(XUY) +r(XNY) Ex. try to prove diminishing returns for typo Isnear matroid. before! Proof of R3: • Let XX SE. • We want to show _____ Build chain J E J E J X Y X NY E X E XVY

· Let J max'le indep subset of XNY. J ⇒ |J|= ((X() X)) (by 4 • Extend J to Jx maxl Inder Subset of X. J $\Rightarrow |J_{X}| = r(X).$

· Extend Jx to Jxy maxil independent subset of XVY $\Rightarrow |JXY| = r(XUY).$ · Note XNY EX EXUT JEJXEJXT by J maxie in XAY Jx maxie in X. le.

· Claim: $|J_{XY}(Y)| = |J_{XY}| + |J| - |J_{X}|$ Pf of Claim: JXX MY $= |J_{Xr}(M)|X| + |(J_{Xr}(M))X|$ $= |(J_{XY}) \wedge Y| + |J_{XY} \wedge (Y \wedge Y)|$ JJXY EXUP = | Jxy X + | J | KA I

=
$$|J_{XY}|J_{X}| + |J|$$

 $L J_{X} \subseteq J_{XY}$.
= $(J_{XY}| - |J_{X}| + |J|$.
Comment: pic.for stack is Vamos anotroid NOT
(snaked parts are circuits). REPR
(Siven M=(E,I], Span of S \subseteq E is
(Span(S) := $\frac{2}{2}e \in E : r(S+e) = r(S)$
i.e. all elements that do not precease
rank of S when added.
(S) Linear prostocid, V_1.... V_n $\subseteq \mathbb{F}^n$:
(S) = $\frac{2}{5}: j \in \text{span}\{v_j: i \in S\}$
usual bu alg.

$$\mathbb{R}^{2} \xrightarrow{\int_{V_{x}}^{V_{x}}} \sup_{\substack{span \\ span \\ \mathbb{E}^{3} \xrightarrow{} \mathbb{E}^{3} = \mathbb{E}^{3} \times \mathbb{E}$$

• Say S in closed If span(S)=S; AKIA Sis a flat of M.

Matroid polytope · Let M= (E,I) matroid. • Let X = {1s' SEI}. = Sindicator vectors = { of independent sets. }. • the matroicl polytope is $P_{M} := conv(X)$? inequalities of PM = { tx = b, x > 3

• some constraints:
$$\forall S \subseteq E$$
, $\mathbf{1}_{S'} \in X$
 $\mathbf{1}_{S'} \cdot \mathbf{1}_{S} = |S' \cap S| \leq r(S)$
real constraints independent!
 $\mathbf{1}_{S'} \times \leq r(S) \quad \forall S \subseteq E$
Theorem: For r rank function of M, let
 $P = \{x \in \mathbb{R}^E :$
 $(ranke) \quad x(S) \leq r(S) \quad \forall S \subseteq E$
 $(nonnegativity) \quad X \in \mathcal{P} \cup \forall e \in E \}$
Hure $x(S) = \mathcal{E} \times \mathcal{E} = \mathbf{1}_{S'} \times \mathcal{E}$
Then $PM = P$.

• We saw Pm=con(X)CP ble X Satisfies all constraints • Harder to show $P \subseteq PM = GONV(X)$ Duse "3 techniques" Algorithmic proof: "Ind · based on greeky aly. • $conv(X) \subseteq P \Rightarrow$ Ic max Ectx: XEX3 & max Ectx: XEP X . Enough to show this is equality. would follow if we find x < X and dual feasible of st. $\mathbf{t} \mathbf{x} = \mathbf{t} \mathbf{x}$ weak

(because cTX Emax 2CTX: XEP3 = bT3 is equalities all the way across.). NEXT TIME. · What's the dual?

2

(dual)

· Our primal: max CTX

• Thus we need

· Consider cost C.

• max cost indep set =

• Need

· For j < k,

• K; :=

• Note

D

0

1

• For j=1...k, set Yu;= where

. Set · Claim 1: 7 dual feasible. PR: D

• Claim 2: $\leq r(S)Y_S = c(Sk).$ See

 $Pf: \Sigmar(S)yS = SEE$

 \triangleright

Christian: ((S_K) is area c(S_K) 11 K

-

